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Abstract

Background: Usability testing of medical devices are mandatory for market access. The testings’ goal is to identify
usability problems that could cause harm to the user or limit the device’s effectiveness. In practice, human factor
engineers study participants under actual conditions of use and list the problems encountered. This results in a
binary discovery matrix in which each row corresponds to a participant, and each column corresponds to a
usability problem. One of the main challenges in usability testing is estimating the total number of problems, in
order to assess the completeness of the discovery process. Today’s margin-based methods fit the column sums to a
binomial model of problem detection. However, the discovery matrix actually observed is truncated because of
undiscovered problems, which corresponds to fitting the marginal sums without the zeros. Margin-based methods
fail to overcome the bias related to truncation of the matrix. The objective of the present study was to develop and
test a matrix-based method for estimating the total number of usability problems.

Methods: The matrix-based model was based on the full discovery matrix (including unobserved columns) and not
solely on a summary of the data (e.g. the margins). This model also circumvents a drawback of margin-based
methods by simultaneously estimating the model’s parameters and the total number of problems. Furthermore, the
matrix-based method takes account of a heterogeneous probability of detection, which reflects a real-life setting. As
suggested in the usability literature, we assumed that the probability of detection had a logit-normal distribution.

Results: We assessed the matrix-based method’s performance in a range of settings reflecting real-life usability
testing and with heterogeneous probabilities of problem detection. In our simulations, the matrix-based method
improved the estimation of the number of problems (in terms of bias, consistency, and coverage probability) in a
wide range of settings. We also applied our method to five real datasets from usability testing.

Conclusions: Estimation models (and particularly matrix-based models) are of value in estimating and monitoring
the detection process during usability testing. Matrix-based models have a solid mathematical grounding and, with
a view to facilitating the decision-making process for both regulators and device manufacturers, should be
incorporated into current standards.

Keywords: Usability testing, Medical device, Missing data, Bayesian statistics, Maximum likelihood

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: alexandre.caron2@univ-lille.fr
†Vincent Vandewalle and Alexandre Caron contributed equally to this work.
1Univ. Lille, CHU Lille, ULR 2694 Evaluations des technologies de santé et des
pratiques médicales, F-59000 Lille, France
Full list of author information is available at the end of the article

Vandewalle et al. BMC Medical Research Methodology          (2020) 20:234 
https://doi.org/10.1186/s12874-020-01091-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-020-01091-y&domain=pdf
http://orcid.org/0000-0002-9872-0633
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:alexandre.caron2@univ-lille.fr


Background
Introduction
The usability testing is a cornerstone of medical device
development, and proof of usability is mandatory for
market access in both the European Union and the
United States [1]. The overall objective of a usability
assessment is to ensure that a medical device is designed
and optimized for use by the intended users in the envir-
onment in which the device is likely to be used [2]. The
goal is to identify problems (called “use errors”) that
could cause harm to the user or impair medical treat-
ment (e.g. an inappropriate number of inhalations, finger
injection with an adrenaline pen, etc.) [3]. The detection
of usability problems must be as comprehensive as pos-
sible because medical devices are safety-critical systems
[4]. However, the total number of usability problems is
never known in advance. The main challenge during the
usability testing is thus to estimate this number, in order
to assess the completeness of the problem discovery
process [5].
In practice, participants are placed under actual condi-

tions of use (real or simulated), and usability problems
are observed and listed by human factor engineers. The
experimental conditions are defined in a risk analysis
that gathers together possible usability problems.
Throughout the usability testing, problems are discov-
ered and added to a discovery matrix - a binary matrix
with the participants as the rows and the problems as
the columns. The current approach involves estimating
the total number of problems as the usability testing
progresses, starting from the first sessions. The number
is estimated iteratively as the sample size increases, until
the objective of completeness has been achieved [6].
From a statistical perspective, the current estimation pro-

cedure is based on a model of how the usability problems
are detected; this is considered to be a binomial process.
The literature suggests that the total number of usability
problems can be estimated from the discovery matrix’s
problem margin (the sum of the columns) [7–11]. How-
ever, this estimation is complicated by (i) the small sample
size usually encountered in usability testing of medical de-
vices [12] and (ii) as-yet unobserved problems that truncate
the margin and bias estimates [13–15].
The objective of the present study was to develop a

matrix-based estimation of the number of usability
problems affecting a medical device. This new method is
based on the likelihood of the discovery matrix (rather
than the matrix’s margins alone), so as to avoid a reduc-
tion in the level of information prior to modeling. The
method’s main targets are (i) regulatory agencies and
notified bodies involved in the pre-market evaluation of
medical devices, and (ii) medical device manufacturers
(more specifically, the human factors engineers in charge
of ensuring that the devices are usable).

Data collected during the usability testing: the discovery
matrix
The human factor engineer collects the results of the
usability testing in a problem-discovery matrix d . Each
row corresponds to a participant, and each column
corresponds to a usability problem. The result is 1 if the
participant discovered the problem and 0 if not. Consider-
ing that after the inclusion of n participants, j problems
have been discovered, a n × j matrix is built. By way of an
example, the discovery matrix obtained after n = 8 partici-
pants (in rows) might be the one presented below:

d ¼

1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
1 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 0 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

In this example, j = 10 different problems (in columns)
have been detected so far. The first participant discov-
ered only one problem (column 1), whereas the second
discovered two new problems (columns 2 and 3), etc.
At this stage, some problems might not have been de-

tected, and the total number of usability problems (m) is
unknown. It should be noted that by definition, m ≥ j
and m − j problems remain undetected. Indeed, d comes
from a complete but unobserved matrix of dimensions
n ×m. This matrix is denoted as x. Thus, the “observed”
matrix d is a truncated version of the “complete” matrix
x ; it lacks the columns corresponding to the as-yet un-
detected problems. Hereafter, we use the following nota-
tion: x ¼ ðxilÞ1≤ i≤n;1≤ l≤m where xil = 1 if the participant i

experiences the problem l, and xil = 0 otherwise.

x ¼

x11 ⋯ x1l ⋯ x1m
⋮ ⋱ ⋮ ⋱ ⋮
xi1 ⋯ xil ⋯ xim
⋮ ⋱ ⋮ ⋱ ⋮
xn1 ⋯ xnl ⋯ xnm

0
BBBB@

1
CCCCA

The human factor engineer’s goal is to estimate the
total number of problems m from the discovery matrix
d and thus deduce m − j - the number of problems that
have not been detected. The new method presented
below addresses this goal.

Conventional estimation of m using a margin-based
probabilistic model
In this section, we describe the margin-based methods
currently employed to estimate the number of usability
problems. As mentioned above, m is currently estimated
by fitting a probabilistic (binomial) model to the discovery

Vandewalle et al. BMC Medical Research Methodology          (2020) 20:234 Page 2 of 14



matrix’s problems margin. More specifically, the probabil-
ity with which a given usability problem is discovered by a
participant is modelled by a Bernoulli trial with a probabil-
ity of success (i.e. detection) p. For a given problem, the
Bernoulli trial is considered to apply independently to
each of the n participants in the usability testing. Thus,
the problem margin sums can be considered as an
independent, identically distributed sequence of Bernoulli
trials, in which the number of times a given usability prob-
lem (a random variable X) has been observed after n par-
ticipants follows a binomial distribution, X � Binðn; pÞ .
Considering the binomial distribution of the margin sums,
the proportion of problems that has been discovered at
least once after n participants is given by the cumulative
function of the shifted geometric distribution [6, 16, 17]:

P X > 0ð Þ ¼ 1 − 1 − pð Þn ð1Þ

The total number of problems m is then deduced from
the following relationship:

j ¼ 1 − 1 − pð Þnð Þ �m ð2Þ

The discovery progress is thus assessed in two steps: the
probability of detection p is first estimated and then
plugged into Eq. (2) to estimate the number of problems
m. A wide range of literature methods are available for
estimating the probability of problem detection. The sim-
plest way involves computing the naive estimate (denoted
as p̂) using the observed discovery matrix d , considering
that only j problems have been detected so far:

p̂ ¼
Pn

i¼1

P j
l¼1xil

n� j ð3Þ

As mentioned above, the naïve estimate is systematic-
ally biased - especially for small samples. Indeed, unob-
served problems result in zero columns that shrink the
probability space and lead to overestimation of p, par-
ticularly at the beginning of the process when j≪m.
Consequently, m is systematically underestimated, which
generates safety concerns in the medical device field. In
response, several strategies have been employed to over-
come the truncated matrix problem.
In 2001, Hertzum and Jacobsen suggested normaliz-

ing the value of p̂ [9]. This procedure considers that
the lower boundary of the probability of detection es-
timated with n participants is 1/n. For example, in a
sample of 5 participants, p̂∈½0:2; 1� . Conversely, the
normalized estimator p̂Norm∈½0; 1�, and is computed as
follows:

p̂Norm ¼
p̂ −

1
n

1 −
1
n

ð4Þ

However, the normalized approach suffers from a
major limitation when estimating the total number of
problems with Eq. (4). In fact, if each participant has
discovered only one problem and if each problem was
discovered only once, p̂ ¼ 1

n , p̂Norm ¼ 0 , and the
estimated number of problems m̂ is infinite. We will not
discuss this estimation method further.
Turing and Good developed a discounting method for

estimating the probability of unseen species on the basis
of observed data [18]. Lewis suggested that the Good-
Turing (GT) adjustment could be used to reduce the
magnitude of the overestimation of p by increasing the
probability space and thus accounting for unobserved
usability problems [8]. The GT adjustment is computed
as the proportion of singletons relative to the total num-
ber of events (i.e. the proportion of problems discovered
only once, xil = 1), and is incorporated in the estimation
as follows:

p̂GT ¼ p̂
1þ GT

ð5Þ

However, Lewis observed that use of the GT estimator
overestimated p. He empirically assessed the best adjust-
ment for a small sample size by carrying out Monte
Carlo simulations on a range of usability testing data-
bases involving web or software user interfaces with
known true values. Based on these simulations, Lewis
concluded that the best method was to average the GT
adjustment and a “double-deflation” term:

p̂double − deflation ¼ 1
2

p̂
1þ GTadj

� �
þ 1
2

p̂ −
1
n

� �
� 1 −

1
n

� �� �

ð6Þ
Nevertheless, the degree of adjustment of the probabil-

ity space for unobserved problems is essentially empir-
ical. The residual bias is not known to trend towards
over- or underestimation.
In 2009, Schmettow considered the problem margin

sums in a zero-truncation framework [19]. Indeed, the
distribution of the problems so far observed follows a
binomial distribution with only a positive integer as
support (i.e. a positive or conditional distribution). The
distribution is zero-truncated because problems only
appear in the discovery matrix once they have been
discovered. The probability is then estimated using stand-
ard mathematical techniques, such as the maximum likeli-
hood or moment estimator [20–22]. The probability mass
function is:
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P X ¼ kð Þ ¼ n
k

� �
pk 1 − pð Þn − k ð7Þ

and zero truncation is achieved as follows:

P X ¼ kð Þzt ¼
0 if k ¼ 0

P X ¼ kð Þ
1 − P X ¼ 0ð Þ if k > 0

8<
: ð8Þ

The probability of problem discovery is then estimated
by using maximum likelihood techniques to fit the mar-
ginal sums to the zero-truncated binomial distribution.
It should be noted that the expected probability of unob-
served problems, Pr(X = 0), is deduced from the non-
truncated function [19].

Methods taking account of a heterogeneous problem
detection probability
All the methods presented above assume that the prob-
ability of detection is the same for all usability problems
(i.e., the same p). However, this assumption is unrealistic
and does not hold true in real-life usability testing.
Schmettow showed that overdispersion was frequent in
the problem margin sums, reflecting heterogeneity in
the probability of detection [23]. Furthermore, errone-
ously ignoring the presence of heterogeneity by using a
single, average value of p leads to overestimation of the
completeness of the discovery process (Jensen’s inequal-
ity) [24]. Schmettow tackled this problem by developing
a model that incorporated heterogeneity. The probability
of detection was considered to be a random variable,
which enabled each problem to have its own probability
of detection. Schmettow used the logit-normal distribu-
tion as a plugin distribution for the probability of detec-
tion. Formally, the logit of the probability of detection
follows a normal distribution N ðμ; σÞ . In this model,
the problem margin sums follows a logit-normal bino-
mial distribution and the probability mass function is:

P X ¼ kð Þ ¼ n
k

� � 1ffiffiffiffiffiffi
2π

p
σ

Z1
0

1 − pð Þn − k − 1pk − 1 exp −
logit pð Þ − μð Þ2

2σ2

 !
dp

ð9Þ
Using the zero truncation technique presented in eq.

(8), Schmettow developed the logit-normal binomial
zero truncated (LNBzt) model and applied it to the us-
ability of medical infusion pumps [25]. To the best of
our knowledge, this model is the only one that accounts
for both heterogeneity and unobserved problems.

Statistical limitations of margin-based methods
The primary limitation of the margin-based methods pre-
sented above is that they estimate the probability of detec-
tion only. The number of problems m is deduced but not
estimated per se. It would be possible to estimate both m

and p by summarizing the discovery matrix on the basis of
the participants’ margin. In such a case, each sum follows
a binomial Binðm; pÞ , thus enabling estimation of both
the number of attempts and the probability of success in a
binomial setting. However, DasGupta and Rubin estab-
lished that there were no unbiased estimates for essentially
any functions of either the number of attempts or the
probability of success [26]. This problem was initially con-
sidered by Fisher and Haldane for estimating species
abundance [27, 28]. It has also been considered by Olkin,
Petkau, and Zidek, who developed both a moment and a
maximum likelihood estimator, and by Carroll and Lom-
bard, who proposed an estimator in a Bayesian setting
(leading to a beta-binomial distribution) [29, 30]. Hall also
considered this problem in an asymptotic framework [31].
The second limitation of margin-based methods is in-

formation loss, relative to the initially available data. For
example, j and the number of singletons were the only
data used in the GT estimates. In the same way, the
zero-truncated method considered only the column
sums for the problems and omitted the pattern of detec-
tion (i.e., the users).
Here, we tackle these problems by directly modelling

the full discovery matrix (including unobserved columns)
and not only a summary of the data (e.g. the margins). In
the Methods section, we describe the statistical basis of
the matrix-based method and detail a Bayesian approach
for estimating the number of problems. In the Results sec-
tion, we compare the matrix-based method’s statistical
properties with those of existing models in a simulation
study and then in actual usability studies. Lastly, we
discuss the implications of our results with regard to
estimation of the number of problems in usability testing.

Methods
We first specify the statistical basis underpinning the
matrix-based method, and the principle of column per-
mutation in particular. Next, we present our estimation
of the number of problems in a Bayesian setting. The
last part is dedicated to the methods used to assess the
matrix-based model’s performance.

The matrix-based method
We first present the matrix-based method. For the sake
of clarity, we simplified the problem by considering that
the probability of problem detection was homogeneous.
The concept of heterogeneous probability will be intro-
duced in the second part of this section, along with the
Bayesian estimation.

Presentation of the method
Consider the complete discovery matrix x. The probabil-
ity of x can be written as follows:
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P xjp;mð Þ ¼ px•• 1 − pð Þnm − x•• ð10Þ
where x•• ¼

Pn
i¼1

Pm
l¼1xil is the total number of

problems observed by n participants.
An example of a possible matrix x obtained from two

participants during a usability testing of a medical device
with m = 3 problems is given below (with users in rows
and problems in columns):

x ¼ 0 0 1
1 0 0

� �
ð11Þ

As seen above, the complete discovery matrix x is never
observed, and the discovery matrix d is the only one avail-
able. It is similar to the matrix x, except that unobserved
problems are missing. Considering the above example,
neither of the users observed the second problem, and the
resulting observed discovery matrix d would be:

d ¼ 1 0
0 1

� �
ð12Þ

It should be noted that if the total number of problems
m is known, then the complete matrix x could be recon-
stituted (with permutation), based on the matrix d. For in-
stance, if we take the matrix x and consider (wrongly, in
this case) that the number of problems m = 5, then the
reconstituted complete matrix denoted by x̂m would be
obtained by padding the matrix d with columns of zeros
(corresponding to as-yet unobserved problems):

x̂m¼5 ¼ 1 0 0 0 0
0 1 0 0 0

� �
ð13Þ

Thus, noting that x•• ¼ d•• , it is possible to compute
the likelihood of the complete matrix x̂m on the basis of
the discovery matrix d . This likelihood is given by the
following equation:

P x̂mjp;mð Þ ¼ px•• 1 − pð Þnm − x•• ð14Þ
Note that the definition of x̂m depends on the value

m, which is unknown. Thus, any inference based on x̂m

will induce some bias. For instance, a maximum likeli-
hood estimation of (p,m) based on x̂m (consisting in
maximizing pðx̂mjp;mÞ with respect to m and p) leads
to m̂ ¼ j (where j is the number of problems observed
so far) and p ¼ x••

nj , which are known to be biased. We

tackled this issue by modeling the distribution of the ob-
served discovery matrix pðdjp;mÞ.
It should be noted that the matrix d is defined in a

lexicographic order, which simply means that the prob-
lems are ordered in the order of detection. For instance,
the six possible complete matrices x leading to the pre-
vious matrix d if m = 3 are presented in Table 1.
In fact, if we could consider the label (the name of

the usability problem) associated with each column,

only one matrix x could lead to the matrix d. How-
ever, since we have no means of finding the names of
the columns in the initial matrix x , we will consider
that the matrix d has unnamed columns. Removing
these column names allows us to consider the matrix
d for the observed data (for which the definition does
not vary as a function of the model’s definition of the
model – in contrast to x̂m). Thus:

P djm ¼ 3; pð Þ ¼
X6
h¼1

Pðx̂m¼3
h m ¼ 3; pj Þ ð15Þ

and more generally

P djm; pð Þ ¼
XH d;mð Þ

h¼1

Pðx̂m
h m; pj Þ ð16Þ

where Hðd;mÞ is the number of different matrices x̂m
h

with m columns leading to the same discovery matrix d.
In the simple example presented above (Table 1),

Hðd;mÞ ¼ 6 and each matrix x̂m
h has the same probability,

i.e. p2(1 − p)4. It follows that:

P djm ¼ 3; pð Þ ¼ H d;m ¼ 3ð Þ � Pðx̂m¼3
h m ¼ 3; pj Þ

¼ 6� p2 1 − pð Þ4 ¼ A2
3 � p2 1 − pð Þ4

ð17Þ

More generally, the number of matrices x with m col-
umns associated with an observed discovery matrix d is:

H d;mð Þ ¼ m!

m − jð Þ! j1!… jr!
¼ 1

j1!… jr!
� Aj

m ð18Þ

where r is the number of different columns of d, and jh
(1 ≤ h ≤ r) is the number of repetitions of the column of
type h. Of course, j = j1 +⋯ + jr. Here, we recognize a
familiar equation: that associated with the number of
anagrams of a word in which each type of column
corresponds to a different letter, including the null
column (repeated m − j times).
Lastly, since each matrix x̂m

h has the same probability,
we obtain the likelihood of d as follows:

Table 1 Six possible complete matrices x̂m¼3 leading to the

observed discovery matrix d ¼ 1 0
0 1

� �
Possibility 1 Possibility 2 Possibility 3

x̂m¼3
1 ¼ 1 0 0

0 0 1

� �
x̂m¼3
2 ¼ 0 1 0

0 0 1

� �
x̂m¼3
3 ¼ 1 0 0

0 1 0

� �

Possibility 4 Possibility 5 Possibility 6

x̂m¼3
4 ¼ 0 0 1

1 0 0

� �
x̂m¼3
5 ¼ 0 0 1

0 1 0

� �
x̂m¼3
6 ¼ 0 1 0

1 0 0

� �
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P djp;mð Þ ¼ 1
j1!… jr!

� Aj
m � Pðx̂m

h m; pj Þ ð19Þ

In practice, the computation of 1
j1!… jr !

has no impact on

the estimation, since it is the same for all values of m
and p. This result is not limited to the homogenous set-
ting and would remain valid for any probability of x
with a column-wise exchangeability property.
In the particular case of the homogeneous setting, we

obtain:

P djp;mð Þ ¼ 1
j1!… jr!

� Aj
m � px•• 1 − pð Þnm − x•• ð20Þ

In the homogeneous setting, our matrix-based ap-
proach could be extended to perform maximum likeli-
hood inference or Bayesian inference on the parameters.
However, as explained above, this setting is unrealistic in
practice and so a heterogeneous probability of detection
should be considered in the following section.

Heterogeneity and Bayesian estimation
We considered a heterogeneous probability of detection;
i.e. each problem l has its own probability of detection
pl. In line with Schmettow’s method, we assume that the
probabilities of detection are independent and follow a
logit-normal distribution, i.e. logitðplÞ � N ðμ; σÞ . The
model’s parameters are m, μ and σ. Note that p1, …, pm
are considered as latent random variables - like random
effects in the mixed model.
Given these parameters, the likelihood of the discovery

matrix d can be written as

P djμ; σ;mð Þ ¼
Z 1

0
…

Z 1

0
P djp1;…; pm;mð Þ f p1;…; pmjμ; σð Þdp1…dpm

ð21Þ

where f(p1, p2, …, pm| μ, σ) is the probability density
function of p1, p2, …, pm. Given that the columns are ex-
changeable, we can also write

P djμ; σ;mð Þ ¼ 1
j1!… jr!

� Aj
m � Pðx̂m

h μ; σ;mj Þ ð22Þ

which will be useful for subsequent computations.
We now consider a Bayesian framework [32] for

estimation of the parameters. This framework has
good theoretical properties and can include prior
knowledge about the problem’s parameters. Indeed,
the distribution of the parameters P(μ, σ,m) must first
be defined. Moreover, assuming the prior independ-
ence of μ, σ and m, P(μ, σ,m) = P(μ)P(σ)P(m). We
assume a prior uniform distribution for m:

P mð Þ ¼ 1
M

∀m∈ 1;…;Mf g ð23Þ

The value of M is the pre-determined upper boundary
for m, and should be chosen by the human factor engin-
eer according to the expected maximum possible num-
ber of problems. To prevent underestimation, a high
value should be used. However, if M is unnecessarily
high, it will lead to an increase in the computing time.
Since our goal here is to estimate the number of prob-

lems, our main interest is PðmjdÞ , which is obtained
using Bayes’ theorem:

P mjdð Þ ¼ P mð Þ � P djmð ÞPM
m0 ¼1P m0ð Þ � P djm0ð Þ ð24Þ

Thus, we need to compute PðdjmÞ for each possible
value of m in {1,…,M}. This computation requires com-
putation of the integrated likelihood PðdjmÞ, as follows

P djmð Þ ¼
Z þ∞

0

Z þ∞

− ∞
P djμ; σ;mð ÞP μð ÞP σð Þdμdσ

ð25Þ
The choice of prior distributions for P(μ) and P(σ) is

discussed below. PðdjmÞ can be computed by approxi-
mating this integral with Markov chain Monte Carlo
(MCMC) techniques.
Even though PðmjdÞ is the main quantity of interest, P

ðμjdÞ and PðσjdÞ are also of interest because they can
be used as prior distributions for future studies; this will
decrease the sample size and improve early estimates as
part of an early control strategy.

Computational aspects
From a computational perspective, and since
Pðdjμ; σ;mÞ ¼ 1

j1!… jr !
� Aj

m � Pðx̂m
h jμ; σ;mÞ, we will first

focus on the computation based on x̂m
h and will then deduce

the results for d:
Let now consider the choice of a prior distribution for

μ and σ. Since μ and σ are Gaussian distribution parame-
ters and in the absence of additional information (e.g.
from previous usability studies), we chose the following
flat priors:

– μ � N ð0;AÞ: a Gaussian distribution with a high
variance A, (e.g. A ¼ 108Þ, mimicking a uniform
distribution on ℝ,

– σ2 � inv − χ2ν : an inverse chi-squared distribution
with ν degrees of freedom (typically ν = 1).

When the data has a Gaussian distribution, choosing the
above priors leads to a conjugated posterior distribution.
However, a logistic-normal distribution of the probabilities
of detection means that conjugacy cannot be obtained.
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Thus, estimation of the posterior distribution required the
use of MCMC methods. This consisted in drawing μ and σ
for each possible value of m, m ∈ 1, …, M according to their
posterior distribution Pðμ; σjm;dÞ, and deducing a numer-
ical approximation of PðdjmÞ from the Monte-Carlo sam-
ple. Lastly, PðmjdÞ was computed using Bayes’ theorem.
For a fixed value of m, we consider sampling from

Pðμ; σjx̂m
h ;mÞ, computing the integrated likelihood Pðx̂m

h jmÞ
with bridge sampling [33], and deducing PðdjmÞ.
The parameters μ and σ (given x̂m

h and m) are sampled
using the parameter space augmented by p1, …, pm,
i.e. the discovery probabilities associated with each
column of x̂m

h . Thus, we will now sample from μ; σ; p1;…;

pm j x̂m
h , using stan software (adaptative Hamiltonian

Monte Carlo algorithm).

Assessment of the performance of the matrix-based method
We compared the performance of five methods (naïve,
GT, double-deflation, LNBzt, and matrix-based methods)
first in a simulation study and then using literature data
from actual usability studies.

Simulation study
Each simulation consisted in generating an observed dis-
covery matrix d from the usability testing of a hypothet-
ical medical device with a known total number of
usability problems m and a sample size n. The probabil-
ity of detection was normally distributed (N ðμ; σÞ) on a
logit scale. The combinations of parameters used in the
simulations are specified in Table 2. The values were
chosen to reflect a wide range of parameters encoun-
tered in usability testing of medical devices.
In each setting (i.e. for each combination of m, μ, σ

and n), we simulated S = 2 × 104 complete discovery
matrices, xm;μ;σ;n;i , i ∈ {1, 2,…, S}.. The matrices d were
obtained by truncation of the zero columns (problems
not yet discovered). We averaged the estimates of m
over the S simulations and computed the 95% fluctu-
ation interval (0.025 and 0.975 quantiles). We also calcu-
lated the prediction’s root mean square error (RMSE) as
the square root of the mean square difference between
the predicted and true values of m:

RMSE mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
S

XS
i¼1

m − m̂ið Þ2
vuut ð26Þ

When the sample is small, little information is avail-
able; a tight credible interval might reflect overconfi-
dence rather than a good estimation. Thus, to gauge the
level of confidence that human factor engineers can
place in each method, we computed the coverage
probability. In each setting, this is the proportion of 95%
confidence intervals for the simulated m̂i that include
the true value of m. The confidence intervals for m̂i were
computed using 1000 parametric bootstrap repetitions
with the parameters ðm̂i; μ̂i; σ̂ i; nÞ . For the matrix-based
method, we were able to directly compute the 95% con-
fidence interval of the posterior distribution of each
simulation, which saved substantial computation time.

Application to actual usability studies
We applied the above-described methods to the discov-
ery matrices of five published usability studies. Four did
not involve a medical device: the EDU3D dataset encom-
passed 119 problems discovered by 20 participants
during the evaluation of virtual environments [34], the
MACERR dataset encompassed 145 problems discovered
by 15 participants during a scenario-driven usability test-
ing of an integrated office system [35], the MANTEL
dataset encompassed 30 problems submitted by 76
expert participants evaluating the specifications of a com-
puter program, and the SAVINGS dataset encompassed
48 usability problems discovered by 34 participants on
voice response systems MANTEL and SAVINGS comes
from the same experiment on heuristic evaluations [36].
These four studies were included because they have been
used in important publications in this field [8] and they
enabled us to address heterogeneity in the probability of
discovery, in particular [23]. The fifth usability testing
involved a medical device: INFPUMP encompassed 107
usability problems discovered by 34 participants (intensive
care unit nurses and anesthesiologist) evaluating a proto-
type medical infusion pump [25].
For each of the five datasets, we computed the esti-

mates and the 95% confidence intervals for the final
data. When a sufficient number of participants had been
included (i.e. for MANTEL, SAVINGS, and INFPUMP),
we addressed the change in the estimates as a function
of the sample size.
All the analyses were carried out running R software

(version 3.6.1) on several servers equipped with 12-core
Intel® Xeon® E5–2650 v4 processors (http://hpc.univ-lille.
fr/cluster-hpc-htc). The MCMC was performed using
the Stan library (http://mc-stan.org) via the rstan pack-
age [37]. The integrated likelihood was obtained using
the bridge_sampler function of the bridgesampling

Table 2 Combinations of parameters for the simulation testing
with homogeneous and heterogeneous probabilities of
detection

Parameter Values

Total number of usability problems m = 20,50,100

Sample size n = 15,20,30,40,50

Probability of problem detection μ = logit(0.1), logit(0.2)
σ = 0.5, 1, 2

Number of combinations tested 90
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package [38]. In order to facilitate the matrix-based
method’s application in practice, a short step-by-step tu-
torial (see Additional file 1) and the code (see Add-
itional file 2) is provided as supplementary material. A
reproducible R code with the data and the simulation
study performed in this manuscript is available on
GitHub (https://github.com/alexandre-caron/matrix_
based-usability). The link to the archived version refer-
enced in this manuscript is available in the “Availability
of data and materials” section.

Results
The simulation study
The distributions of the probability of detection for each
setting are summarized in Table 3. The distribution
shifted to a highest average probability of detection
when μ increased. It is noteworthy that a higher disper-
sion (σ) not only flattened the distribution but also led
to an increase in probability of very rare problems.
The results of the simulation are presented for the five

methods (naïve, GT, double-deflation, LNBzt, and
matrix-based). The prediction error of m as a function
of the sample size n are presented in Fig. 1. The RMSE
is presented in Fig. 2. A tabulated version of these data
is also provided as supplementary material (see S-
Table 5 and S-Table 6 in Additional file 2). As men-
tioned by Schmettow, extreme estimates of m can be

obtained with the LNBzt method when the number of
singletons is high. We decided to discard any results
with m̂LNBzt > 500, to avoid penalizing the method with
estimates that would not be realistic in real life [19].
As expected, the accuracy of the estimation of the

number of problems increased with the sample size for
all estimates, with less bias and greater consistency (i.e.
the RMSE tended towards zero as the sample size
increased). Likewise, the estimates were better as the
number of problems to discover m increased. For all
methods, the bias was higher as the number of “rare”
problems increased (i.e. for a higher σ).

Methods accounting for heterogeneity: the matrix-based
and LNBzt estimates
The matrix-based method showed less bias overall; the
bias ranged from − 8.5 to + 14.7% for the 90 simulated
combinations. This range was narrower (from − 5.1 to +
1.2%) when the participant sample size was 30 or more.
In contrast, the LNBzt method displayed systematic up-
ward bias; although the lower boundary was − 0.1%, the
upper boundary was 54.7%. This bias was still observed
for 30 participants, with an upper boundary of 23.8%.
When σ = 2, the matrix-based method underesti-

mated the number of problems. However, this under-
estimation was less than − 5.1% for n ≥ 30. For lower
values of σ, the matrix-based method’s bias ranged

Table 3 Distribution of the probability of detection as a function of μ and σ. The probability of detection followed a logit-normal
distribution: logitðplÞ � N ðμ; σÞ
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from − 2.6 to + 1.2% for n ≥ 30. The bias associated
with the LNBzt method was high for σ = 2. Although
the bias decreased with n, it was still + 11.8% for n =
50. For a lower value of σ, the bias associated with
the LNBzt method ranged from − 2.6 to + 1.2% for
n ≥ 30.
The matrix-based method gave the lowest RMSE in all

settings. This was particularly true when the number of
“rare” problems was high (σ > 0.5). The LNBzt gave the
highest average RMSE. As mentioned in the Methods,
this bias resulted from a few very high estimates of m,
which increased the average RMSE dramatically. This
was true for the lowest average probability of detec-
tion (i.e. μ = logit(0.1)) and the highest variance (i.e.
σ = 2).

Methods not accounting for heterogeneity: the naïve, GT, and
double-deflation estimates
The estimates that did not take account of heterogen-
eity showed the strongest bias. The naïve estimate
was the worst; it systematically underestimated the
true value of m (range: − 33.2% to − 0.2%). This
underestimation was slightly lower for the GT esti-
mate, especially when σ was low. However, the range
was still broad: from − 32.2% to − 0.2%. The double-
deflation method compensated even more for under-
estimation but sometimes led to overestimation
(range: − 32.0 to + 8.6%).
When σ was lower (i.e. 0.5 or 1), the trend towards

underestimation was less pronounced for the double-
deflation and the GT methods (with lower boundaries of
− 14.1% and − 17.2, respectively) than for the naïve
method (lower boundary: − 22.8%. The bias persisted for
larger sample sizes: it was still as high as − 6.4% for the
three methods for n = 50.

Fig. 1 Bias in the prediction of m: the mean error and 95% fluctuation interval (as a percentage of the true m) as a function of the sample size
(n). The results are presented for various probabilities of problem detection ((μ, σ), columns) and various numbers of usability problems (m, rows).
The dashed line represents the true m
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The naïve RMSE estimate was again the worst of the
methods that did not take account of heterogeneity.
Although the GT and the double-deflation methods gave
acceptable RMSEs, this feature must be interpreted with
caution. In fact, the acceptable RMSEs resulted essen-
tially from systematic underestimation, which in turn
limited the range of possible m̂ (which can never be
lower than j). Hence, the interpretation of the RMSE
was limited for these methods.

Coverage probability
As explained in the Methods, human factor engineers do
not know the variables for the usability testing they are
carrying out. The coverage probability enables them to
study the reliability of the estimate (and its 95% confidence
interval). A tabulated version of the data is provided as
supplementary material (see S-Table 7 in Additional file 2).
For the matrix-based method, the coverage probability

was always over 80% (except for m = 100, n = 15, μ =
logit(0.1), and σ = 0.5, where the probability of coverage
dropped to 72%) with an average of 94% over the range of

settings tested in the simulations study. The probability
was at least 81% for n ≥ 20 and at least 88% for n ≥ 30. The
LNBzt method’s coverage probability was always over
80%, with an average of 92%. The LNBzt performed par-
ticularly well for small sample sizes, with a minimum
coverage of 89% for n = 15, of 86% for n = 20, and of 82%
for n = 30. Indeed, the LNBzt method provided the broad-
est confidence intervals of the five methods studied here.
It is noteworthy that the LNBzt method was the only one
that sometimes failed to fit the data (in 33% of cases).
However, it was impossible to adjust the method’s param-
eter for each individual simulation. In practice, changing
the optimization function’s starting values would avoid
most of the fitting failures.
The methods not taking account of heterogeneity pro-

vided a low, erratic coverage probability in most settings.
On average, the coverage probabilities were 17.9, 31.5
and 33.7% for the naïve, GT, and double-deflation
methods, respectively. Furthermore, the three methods
frequently yielded excessively high estimated levels of
confidence - especially for high values of m.

Fig. 2 Consistency in the prediction of m: the RMSE for the prediction of m (as a percentage of the true m) as a function of the sample size (n).
The results are presented for various probabilities of problem detection ((μ, σ), columns) and various numbers of usability problems (m, rows). The
LNBzt results are not represented for m < 100 and m u = logit(0.1), due to a high RMSE
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Lessons learned from the simulation study
From the human factor engineer’s point of view, the
matrix-based and LNBzt methods are the only reliable
ones; they gave a good coverage probability in almost
any setting and for almost any sample size. Conversely,
the methods not taking account of heterogeneity were
unreliable and so could not be trusted.

Application to real data from published usability studies
The estimated number of problems computed from the
discovery matrices of five published usability studies are
presented in Table 4. Although the real number of prob-
lems is not known, we can compare the matrix-based
method’s predictions with those of the other methods
(and especially the LNBzt method).
In these five datasets, the number of participants

ranged from 15 to 76. Previous studies of these datasets
[8, 19, 23, 25] demonstrated that the probability of prob-
lem detection was heterogeneous. As suggested by the
results of the simulation study, the methods not taking
account of heterogeneity considered that the discovery
process was complete or very close to being complete
for all datasets (except MACERR: see below). Thus, we
compared the results of the methods that do account for
heterogeneity. It is noteworthy that the estimates of μ
and σ2 by both the LNBzt and the matrix-based methods
fell within the range observed in our simulation study
for all datasets other than MACERR.
All five methods considered that the SAVINGS and

MANTEL datasets were complete after 34 and 76 partic-
ipants had been included, respectively. However, the

confidence intervals produced by the matrix-based and
the LNBzt methods suggest that few problems had yet
to be discovered.
The matrix-based and the LNBzt methods estimated

similar number of problems for EDU3D ( m̂matrix − based

¼ 152 and m̂LNBzt ¼ 155Þ . The 95% confidence interval
was broader for the LNBzt method (132 to 195) than for
the matrix-based method (135 to 167).
The infusion pumps in the INFPUMP study were in

early-stage development, and an additional re-design
phase (for fixing the usability problems discovered) was
planned; this explains why n =107 unique problems were
detected by the 34 participants in the usability testing.
The LNBzt and matrix-based methods gave similar
estimates and confidence intervals: m̂LNBzt ¼ 122 (i.e. 15
undiscovered problems), with a 95% confidence interval
from 115 to 131, whereas m̂matrix − based ¼ 120 , with a
95% confidence interval from 112 to 143. The parame-
ters computed by the matrix-based method predicted an
average probability of detection μ̂matrix − based ¼ logitð0:13
6Þ and a dispersion of σ̂matrix − based ¼ 1:52 . For the
LNBzt method, the probability μ̂LNBzt ¼ logitð0:136Þ
was the same, and the dispersion was slightly higher
( σ̂LNBzt ¼ 1:50 ). The confidence interval (from 110 to
136) was narrower. The true number of problems with the
pump was not known because it was redesigned after 34
participants had tested the device. However, if we accept
the parameters μ̂ and σ as true and apply the results of
our simulation study, the INFPUMP data suggest that the
LNBzt and matrix-based methods are both reliable.
Nevertheless, the breadth of the respective confidence

Table 4 The estimated number of problems for five real datasets from published usability studies

n* j** naïve Good-Turing double deflation LNBzt matrix-based

EDU3D 20 119

m̂ 120 121 122 155 152

95%CI 117–121 118–125 120–129 132–195 135–167

MACERR 15 145

m̂ 156 178 184 449 382

95%CI 146–160 171–207 192–245 256–1301 346–440

MANTEL 76 30

m̂ 30 30 30 31 30

95%CI 30–30 30–30 30–30 31–35 30–37

SAVINGS 34 44

m̂ 44 44 44 46 45

95%CI 44–45 44–45 44–45 42–50 44–51

INFPUMP 34 107

m̂ 107 107 107 122 120

95%CI 107–108 106–108 106–108 110–136 112–143

* n is the number of participants in the study
** j is the number of problems discovered after analyses by n participants
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intervals emphasizes the remaining uncertainty for these
two methods.
Using the MACERR data, the LNBzt predicted a very

low average probability of detection (μ̂LNBzt ¼ logitð0:014Þ)
and a high level of heterogeneity ( σ̂LNBzt ¼ 1:90Þ . These
values were out of the range of the settings tested in the
simulation study, and suggested that the number of “rare”
problems was high. This might explain the high number of
problems predicted by the LNBzt method (m̂LNBzt ¼ 449),
and the very large 95% confidence interval (from 256 to
1301). The matrix-based method’s estimate was lower
(m̂Matrix − based ¼ 382), and the 95% confidence interval was
narrower (346 to 440). However, the number of partici-
pants included in MACERR was low (n = 15); a larger
number of participants would have been necessary to
discover new problems and improve the estimates.
On average, computation of the estimate and its confi-

dence interval took less than 10 min for the matrix-
based method, less than 1 min for the LNBzt method,
and only a few seconds for the three other methods.

Discussion
We decided to model the full discovery matrix (includ-
ing unobserved columns) and not just a summary of the
data (e.g. the margins). The estimation problem was
considered simultaneously in terms of the (heteroge-
neous) probability of problem detection and the number
of problems. Although the experimental conditions in
real-life usability testing are unknown, the matrix-based
method outperformed the other methods and appeared
to be the most reliable in a broad range of settings.
Most of the currently available methods assume that

the probability of detection is the same for all problems.
This assumption is likely to be wrong, since real data
show that the probability of detection varies [19, 23].
Furthermore, ignoring heterogeneity is known to
strongly bias the results [24, 39]. We therefore developed
a method that accounted for heterogeneity in the prob-
ability of problem discovery p; we used a logit-normal
distribution as a plugin to model this uncertainty. The
choice of this distribution was convenient in that it
allowed us to compare our method with the only pub-
lished model that accounts for heterogeneity. However,
there are no data for confirming the validity of this
choice. Nevertheless, this limitation could be easily
overcome by replacing the logit-normal by another dis-
tribution (such as beta or gamma) if it proves to be more
appropriate. This choice could be made using model
choice criteria (e.g. the Akaike information criterion or
the Bayesian information criterion). However, it should
be borne in mind that for a small sample size, fitting for
both incompleteness and heterogeneity is complex and
inevitably leads to a high degree of uncertainty.

Here, we sampled μ and σ for fixed values of m. This
turned out to be a rather time-consuming strategy be-
cause we had to run as many chains as there were values
of m. We chose not to sample directly from the joint
distribution Pðμ; σ;mjdÞ because the dimension of the
latent parameters p1, p2, …, pm varied as a function of m
- making it impossible to use a standard MCMC
algorithm. In this particular situation, use of the revers-
ible jump algorithm [40] might be a solution but would
considerably complicate our algorithm.
There are two key moments in medical device develop-

ment for assessing the best method. Early in the develop-
ment cycle, the device is not mature; usability testing is
referred to as “formative” because many usability
problems are being discovered and corrected in an itera-
tive design improvement process. Just before market
access, usability testing is referred to as “validation” test-
ing; they are performed on the final version of the device
to ensure that no critical usability problems remain [1, 2].
The number of participants in the validation testing is

an important parameter for both the regulatory author-
ities and the device manufacturer. Indeed, a sufficient
sample size will (i) guarantee the medical device’s com-
pliance with the safety standards required for market
authorization, and (ii) avoid a “black swan” effect that
would strongly affect the manufacturer’s credibility and
profitability [41]. The validation testing focuses on the
detection of infrequent usability problems. The US Food
and Drug Administration requires a minimum of 15
participants [1]. This minimum is based on a naïve
estimate, which has been proven to dramatically under-
estimate the true number of usability problems for this
number of participants [12]. Indeed, the average cover-
age probability observed in our simulation study for n =
20 was as low as 12% and did not exceed 51%. Further-
more, this threshold does not consider heterogeneity in
the probability of problem detection. Our findings
suggest that to produce a relevant estimate with the
matrix-based method, at least 20 participants are re-
quired in the validation step. In fact, the matrix-based
method displayed good statistical properties with as few
as 20 participants.
Since the validation testing only concerned problems

that are probably less frequent, one could question the
need to use methods that account for a heterogeneous
probability of problem detection. In fact, problems are
expected to be “homogeneously rare”. To the best of our
knowledge, however, the assumption of homogeneity for
rare problems has no theoretical or experimental basis.
Furthermore, human factor engineers will define the
usability testing’s experimental conditions according to
the risk analysis, in order to facilitate the detection of
problems previously described in the literature. If an
engineer suspects the existence of problem removing the
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cap from an adrenaline pen, he/she might choose to
evaluate the device in a more realistic test environment
(e.g. with an actor pretending to go into anaphylactic
shock); the problem is more likely to occur there than in
a quiet, low-fidelity environment. By making some prob-
lems more detectable, the human factor engineer might
introduce a degree of heterogeneity into the discovery
process.
The choice of method was even more obvious for

“formative” testing. In our simulations, the “formative”
testing corresponds to a setting in which usability
problems are frequent and numerous. Schmettow’s
usability testing of a medical infusion pump is also an
example of a formative assessment because it was
followed by a redesign. Here, we proved that matrix-
based methods are more reliable and have low bias
and high consistency. As in the case of the infusion
pump, a reliable estimate from a small number of
participants is an economic advantage for the manu-
facturer, who can shorten redesign cycles, accelerate
device development, and hasten market access. The
matrix-based method met this requirement because it
required the fewest participants to guarantee good
statistical properties. Another strength of the matrix-
based method is its ability to embed previous know-
ledge through the prior parameters. Indeed, we used
weakly informative priors for μ and σ to avoid intro-
ducing information that we did not have about the
medical device in question. However, one could take
advantage of prior knowledge from earlier stages in
device development or from a formative usability
assessment to increase the accuracy of the estimate,
especially when the sample size is small (i.e. an early
control strategy). This approach is actually encour-
aged by regulatory bodies for medical device clinical
trials [42] and helps to reduce the overall sample size.
Although we have suggested a threshold of 20

participants as the minimum sample size for obtain-
ing a reliable estimate with the matrix-based method,
we do not consider this to be the final threshold or a
“magic number”. Indeed, as suggested by various
researchers, the estimation models should be run
iteratively as the sample size increases [4]. Thus, esti-
mation models constitute a means of controlling and
ensuring quality in formative testing and should not
solely be considered as a checkpoint for validation
testing. Although the matrix-based method was more
reliable, the LNBzt method could be used to double
check the estimates - especially when high dispersion
and/or the presence of very rare problems is sus-
pected. Indeed, the LNBzt method’s coverage prob-
ability is high, and the overestimation bias makes it a
conservative method that could usefully prevent the
usability testing from being stopped too early.

Conclusions
Estimation models (and particularly matrix-based models)
are of value in estimating and monitoring the detection
process during usability testing. Matrix-based models have
a solid mathematical grounding and, with a view to facili-
tating the decision-making process for both regulators
and device manufacturers, should be incorporated into
current standards. To this end, the step-by-step tutorial
provided here should facilitate the practical use of the
matrix-based method in the evaluation of medical devices.
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